Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources
نویسندگان
چکیده
MOTIVATION Anatomical Therapeutic Chemical (ATC) classification system, widely applied in almost all drug utilization studies, is currently the most widely recognized classification system for drugs. Currently, new drug entries are added into the system only on users' requests, which leads to seriously incomplete drug coverage of the system, and bioinformatics prediction is helpful during this process. RESULTS Here we propose a novel prediction model of drug-ATC code associations, using logistic regression to integrate multiple heterogeneous data sources including chemical structures, target proteins, gene expression, side-effects and chemical-chemical associations. The model obtains good performance for the prediction not only on ATC codes of unclassified drugs but also on new ATC codes of classified drugs assessed by cross-validation and independent test sets, and its efficacy exceeds previous methods. Further to facilitate the use, the model is developed into a user-friendly web service SPACE ( S: imilarity-based P: redictor of A: TC C: od E: ), which for each submitted compound, will give candidate ATC codes (ranked according to the decreasing probability_score predicted by the model) together with corresponding supporting evidence. This work not only contributes to knowing drugs' therapeutic, pharmacological and chemical properties, but also provides clues for drug repositioning and side-effect discovery. In addition, the construction of the prediction model also provides a general framework for similarity-based data integration which is suitable for other drug-related studies such as target, side-effect prediction etc. AVAILABILITY AND IMPLEMENTATION The web service SPACE is available at http://www.bprc.ac.cn/space.
منابع مشابه
Systems biology Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources
Motivation: Anatomical Therapeutic Chemical (ATC) classification system, widely applied in almost all drug utilization studies, is currently the most widely recognized classification system for drugs. Currently, new drug entries are added into the system only on users’ requests, which leads to seriously incomplete drug coverage of the system, and bioinformatics prediction is helpful during this...
متن کاملComputational Drug Repositioning by Ranking and Integrating Multiple Data Sources
Drug repositioning helps identify new indications for marketed drugs and clinical candidates. In this study, we proposed an integrative computational framework to predict novel drug indications for both approved drugs and clinical molecules by integrating chemical, biological and phenotypic data sources. We defined different similarity measures for each of these data sources and utilized a weig...
متن کاملSuperPred: drug classification and target prediction
UNLABELLED The drug classification scheme of the World Health Organization (WHO) [Anatomical Therapeutic Chemical (ATC)-code] connects chemical classification and therapeutic approach. It is generally accepted that compounds with similar physicochemical properties exhibit similar biological activity. If this hypothesis holds true for drugs, then the ATC-code, the putative medical indication are...
متن کاملTowards Drug Repositioning: A Unified Computational Framework for Integrating Multiple Aspects of Drug Similarity and Disease Similarity
In response to the high cost and high risk associated with traditional de novo drug discovery, investigation of potential additional uses for existing drugs, also known as drug repositioning, has attracted increasing attention from both the pharmaceutical industry and the research community. In this paper, we propose a unified computational framework, called DDR, to predict novel drug-disease a...
متن کاملPredicting Anatomical Therapeutic Chemical (ATC) Classification of Drugs by Integrating Chemical-Chemical Interactions and Similarities
The Anatomical Therapeutic Chemical (ATC) classification system, recommended by the World Health Organization, categories drugs into different classes according to their therapeutic and chemical characteristics. For a set of query compounds, how can we identify which ATC-class (or classes) they belong to? It is an important and challenging problem because the information thus obtained would be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 31 11 شماره
صفحات -
تاریخ انتشار 2015